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1 Introduction and Important Definitions

Galois Theory is named in honor of Évariste Galois, who lived a fascinating but short life. It began as a
study in search of general equations for finding the roots of polynomials of degree fifth and above. A “general
equation” here means an equation or set of equations that define the roots of a polynomial using only the
coefficients in the polynomial, the four basic operations, exponentiation and taking nth roots. For example,
it has been known since before the 9th century that the quadratic equation now commonly taught before
university level is such a solution to any polynomial of degree 2. Similar equations were later discovered
for the third and fourth degree, which inspired the question of which degree polynomials have such an
equation. It was known from previous results that there in fact does not exist a general solution to fifth
order polynomials, namely polynomial counterexamples could be obtained that are not solvable via a general
equation. But Galois’ work instead found exact conditions for when polynomials could be solved via the
four basic operations and radicals, which fruit a much deeper understanding as to why there is no general
equation for fifth order and certain above orders.

The Fundamental Theorem of Galois Theory (FTGT) is simple enough to understand, at least without
proof, and yet incredibly insightful about Galois’ ideas. In order to understand the language of Galois
Theory, I will first give a few definitions and explanations on the more basic level.

Unless otherwise stated, let F denote a field, and let E denote an extension of F, that is that E,F are
fields such that E ⊇ F. Also G will denote a group.

Definition (Degree of a field extension). The degree of a field extension E is the degree of E as an F-vector
space, and will be denoted by [E/B].

Definition (Algebraic Extensions). A extension E is called an algebraic extension of F if every element in
E is the root of some polynomial f in F[x].

These extensions in particular are useful for adjoining roots of a polynomial f to the field F.

Definition (Normal Extension). E is a normal extension of F if every irreducible in F[x] with a root in E
can be expressed as linear factors in E[x].

When this is true we say that f splits in E[x].

Definition (Galois Group). The Galois Group of E, an algebraic extension of F, is the group of automor-
phisms of F that fix F. This group is denoted by Gal(E/F)

To fix a field F means that elements in F map to themselves under every automorphism in G. A group
of automorphisms uses composition as the group operation.

Definition (Fixed Field). The fixed field of a group of automorphisms of a field F is the set of all elements
that are mapped to themselves for any automorphism in G.

Note the distinction between the previous two definitions: the Galois group refers to a set of
automorphisms while a fixed field refers to a set of elements, which can be shown to be a field.

Definition (Galois Extension). E is a Galois extension of F if the fixed field of the Galois group of E is
exactly F.
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2 The Theorem Statement (without proof)

We are ready to discuss the statement in more detail.

The Fundamental Theorem of Galois Theory. Let E be a finite Galois Extension of F and let G be
the Galois group Gal(E/F).

1. Then there is a one-to-one correspondence between the intermediate fields E ⊇ B ⊇ F and the subgroups
{1} ⊆ {GB} ⊆ {G}
In particular, the correspondence is given by B = Fix(GB), where GB denotes a subgroup of G, and B
is the fixed field of that subgroup GB.

2. Furthermore, the intermediate fields B are normal extensions if and only if GB is a normal subgroup
of G. In fact, this is only the case whenever B is a Galois extension of F, and we have the important
isomorphism given by:

Gal(B/F) ∼= G/GB

3. For each subfield B, the degree [E/B] = |GB|, and likewise the index of GB in G is [B/F].

Some important consequences are highlighted below.

One-to-one mapping : More generally, a subgroup H of G can be mapped to its corresponding field
extension B by declaring B as the fixed field of H. A field extension B is mapped to its corresponding
subgroup H by finding the set of elements in G that are the identity on B.

We have that distinct subgroups H1, H2 of G map to distinct extensions of F, B1 and B2: Let B1=
Fix(H1), B2= Fix(H2). If B1=B1, then every automorphism in H2 fixes B1 and so H2 ⊆ H1, and vice versa,
and so therefore H1 = H2. Then by the contrapositive there is exactly one subgroup of G that corresponds
to each field extension of F.

Proving that there is exactly one extension field that corresponds to each subgroup would require at
least a page or two. The idea is that because E is a Galois extension of F, then it must also be what
is called the splitting field of some separable polynomial. A separable polynomial is an irreducible in F[x]
that splits into distinct linear factors in E. Because each intermediate field B contains F, we have that this
separable polynomial is also an element in B[x], and so E must also be a Galois extension of B. So therefore
B= Fix(Gal(E/B)), where now the corresponding subgroup of G for the extension field B is Gal(E/B).

The correspondence between intermediate fields and subgroups is inclusion reversing. For example, E, the
largest field extension of F, always corresponds to the smallest group of automorphisms, namely the identity
automorphism {1}, because only the identity automorphism fixes all of E. In the same sense, because E is
a Galois extension, we have that the fixed field of G must be F, and so the smallest field extension of F,
itself, corresponds to the largest subgroup of G, also itself. A more rigorous explanation is given below.

If we let B1, B2 be intermediate fields such that E ⊇ B1 ⊇ B2 ⊇ F, then we see that the subgroup
GB1 which corresponds to automorphisms that fix B1, also fixes all of B2. Therefore the subgroup GB1

must be contained in GB2 , the set of automorphisms that fix B2. Therefore though B1 contains B2, the
corresponding subgroup G1 is contained in G2.

Relation between order of subgroups and extension fields: Let E be a Galois extension of F, with an
intermediate field B given by E ⊇ B ⊇ F, and let G be the Galois group of E/F.

If the degree of E as an F vector space, [E/F]= n, we can write every term in E using only n elements
from E. It can be shown that [B/F] divides [E/F], namely by [E/F] = ([E/B])([B/F]): If [E/B]= a,
[B/F]= b, then we need a elements from E to span E using coefficients in B, and for each of those we need
b elements in B using coefficients in F, so therefore n = ab.

We have shown that [E/F] = [E/B][B/F]. By the FTGT, we can conclude that the order of the Galois
extension field E as a B vector space is equal to the order of the corresponding subgroup GB. Therefore by
definition the index of that subgroup is given by the degree of B as an F vector space.
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2.1 Implications for 5th Order Polynomial

The following is based on the “Abel-Rufini Theorem” article from Wikipedia.

The first proof that the general fifth order polynomials have no solutions was known as the Abel-Ruffini
theorem, and was made before Galois theory became the predominant train of thought on the matter. A
modern proof of the same problem using Galois theory relies on factoring the general polynomial into its
five roots, by declaring 5 roots αi for i = 1, 2, 3, 4, 5, and then splitting the general polynomial into a linear
product (x−α1) · · · (a−α5). Notice that any isomorphisms that interchange the roots i.e. permute the roots
leave this polynomial unchanged. The key essence of the proof is that we can find an isomorphism between
a group known as the symmetric group on 5 letters S5 and the Galois group of general polynomials of degree
5. But because this particular group only has a normal subgroup known as A5, which itself has only simple
subgroups i.e. subgroups that are not normal, the respective extension fields will not be normal and thus
not solvable. For orders of degree n ≥ 5, we can instead find isomorphisms to the symmetric groups Sn, and
similar arguments may hold to prove similar results for higher orders.

3 Conclusion

The fundamental theorem of Galois theory tells us that the structure of extensions of a field F is exactly the
same as the structure of subgroups of the group of automorphisms of the field F.

For example: statement (2) given in the statement above tells us that an extension is normal only
whenever its corresponding subgroup is a normal subgroup of G. By examining the structure of this group
G, we can immediately determine the desired extension fields of F.

Reference Text

This paper was based on the text Galois Theory by Steven H. Weintraub. Namely, the introductory chapter
2 of the text regarding the fundamental theorem of Galois theory, and in particular pages 18-32.
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